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1. Introduction

S A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known
inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in

Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or followlng a specified surface
with compliant force sensors and/or visual feedback. In all cases, control is +_tually implemented through c_rdinated

motion of the various liqks which comprise the manipulator; i.e. in linL space.'_As a consequence, the control computer
_ +,,rll , of every '+sophisficat +e_df anthropomorphic robot must contain provisions for solving the inverse kinematic problem

l which, in the case of '+"simple'+', non-redundant position control, involves the determination of the first three link angles.

,.0 I, 0,, and % which produce a desired wrist origin position Px,,,, pyw, and PL,, at the end of link 3 relative to, some fixed

'base frame, as further explained in [11. . . !_; +
.... " ,i t

It is welJ krJef_,n th+,+t+'lhe forward ki rnauc e+q+uatLons++_e funcuonal dependenc_ ofj_, l_¢_,_arttlJ>_._wtJ_e 0i s)

u._ually can bF_,ij_ _ e relati_ly_ ttfo___sing (say)theL'D_navit-_al_erlt__fg_tP_rl._f_o l_n_air'l_es

in order to o_tain fl_cu'on_+{e,'_d (3, l_e _+a+at_Ch: "

/'// . +_ +. (1)

,, ,+j .........p,(o,,e+,o,)j
th:_+_rver,_h+convcrsedetera_inatiQn of a particular ,+ _? (- _ _"

which "solves" (1) for a given or desired X is not nearly_as s_aightfo_, although analytical inverse kinematic solu-

tions do exist for virtually all current industrial manipulaP_rs, lt+,q_t be noted, however, that these analytical inverse

kinematic solutions are usually non-unique and sequential,_urther require the evaluation of some rather complex

Arm ,_ functions---see Summary Sheet 3 4 57 of [ll, for exgzl_l_which presents one such solution for the PUMA 560

industrial manipulator.

We should also note that this problem '_comes significa_t_f/more complex when the orientation question is

addressed simultaneously; i.e. when a desired end..effector or t++,_l%rientation is specified in addition to its position. Cer-
tainlv, any technique which can "simplify' solutio_s to t_P"rmverse kinematic question in robotic:; can have a _ig,filicant

impact not ontv on the computational requirements ix_lved with robot control, but also on the diversity uf tasks the

m:mipulator can perform. The primary purpose of/l_'s _er will be to thoroughly evaluate, extend, and demonstrate a

new computational technique for solvin_ the compete co_nfig_ration (position and o_ientation) inverse kine+m+tic problem

f,,r a ;'aricty ofmuhi-tink manipularor+_+_y.//_ :_ ,:,__'_r +!,i: ++++-+_ .. . .

_ F ,+.[i.l+_the.me_t_,.sP_tionLv+Wg+_ttl_ot_tlin+c __wainverse kinematic solution and demonstrate its potenttal v,a some /_/
/recent computer simulations. _ wi_alsa compare it to current inverse kinematic methods m_d outline somc++_f+._lm........ /-//;_+'

romaining problems which will b_ addressed in order to render it fully operational. +h+_S_+we'+willt"+_ _'
_k number of practical consequences _ this technique beyond its obvious use in solving the inverse kinentatic question. ,I_ ;

.,

"+ . " ._.-._how--how+-a n mbcr of-.di+ePse-.+,but++wetl'++known_robotic'_P_S"m:tY'_'be_+handled_°bY ''suitable

mod fications to and/or extenstons of't_is new mverse kmemauc resu t.

2. A Complete lnve_e Kinematic Solu_0n _,"

\
To motivate the mor_eneral six degree of freedom solution to the inverse kinematic problem associated with the

\
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overall configuration of the end effector, we will first present a solution to the three degree of freedom inverse kinematic
problem associated with only the position of (say) the wrist origin associated with the end of the third link of a six link
manipulator. The particular solution given here follows directly from that given in [2] with jT replaced by j-t as sug-

gested in [2] and later implemented in [3], where J denotes the well known Jacobian matrix of the manipulator. More
specifically, the time differentiation of (1) directly implies that

"_Sx 5G, _3,

B0t 50, 503

Bet 502

=

50t 502

kl5_

503

= JO, (3)

with the Jacobian J being a matrix of partial derivatives, as specified via equation (3).

In light of the preceding, now consider the closed loop dynamical system depicted in Figure !, which is "driven"

by some desired wrist origin position in Cartesian space, namely

1 ,,,
It can be noted that in Figure 1. K might be a (3x3) arbitrary, diagonal, time-invariant gain matrix. O. would be a time

varying 3-v_tor system output which represents the derivative of the desired link angle displacement which, when
integrated, yields the 3-vector output representative of the link angle displacement. O,. and (3(-) represents the forward

kinematic operator defined by equation (1).

We might next define the equations which describe the dynamical behavior of the Figure I system, namely

0, = J-t(Os)K(Xd - X,), (5)

and

X, = G(0j). (67

Clearly, the premultiplication of {5) by J(0s) and the subsequent substitution of X, for J(0,)(_,, in light of (3), then implies

that

Xs = K(Xd - X,), (7)

or that X, has a dynamical system representation as depicted in Figure 2. The reader will immediately recognize the sys-

tem of Figure 2 as a parallel combination of three relatively simple, decoupled, first order, linear, time invari:mt systems
with ,zrbitrarily adjustable (via the elements of K) stability properties. In particular, if X,_ represents a step input of mag-

nitude Xd (actually a 3-vector step input), applied at time to, then it is easy to show that for zero initial conditions on X,,

X,(t) = [l - e-K(t-_]Xd. (8)

or that for K positive definite, Xs(t) will track the desired Cartesian position X,,(t) = Xa with an (arbitrarily fast) exponen-

tially decaying error! In light of (67, it therefore follows that 0_(t_ can be made to approach the desired 0 a _hich

corresponds to Xd = G(0d) arbitrarily fast as well.

The reader might next note that in order to make this inverse kinematic procedure applicable to more general

forms of robotic motion, it has to be "extended" to include inverse orientation information as well; i.e. solutions for 04,

05, and 06 of a general six link manipulator. However, the extension of the Figure 1 system to i,rclude orientation as

well as position is a non-trivial task. since (i) there is no 3-vector representation for orientation and (ii) even if there

were, the Figure I system would then require an analytical expression for the inverse of a corre,_pot_ding (6".:6) J:zct)bian,

a formidable computational task. In light of these observations, we will now present, for the tirst time, a complete

dynamical system solution to the inverse kinematic problem for both position and orientation.

To begin, we first note that the orientation of (say) the tool frame relative to the lixed base frame can be, and _ften

is, specified by an appropriate (3×3) orientation coordinate Iransformation matrix, often called a rotation .uarix, of the
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form (using the notation in [1]):

n, _I

!

nz _J

where the orthogonal unit vectors a, n, and s represent the approach, normal, and sliding vectors associated with the
orientation of the tool frame relative to some fixed base frame. Furthermore, since s can be obtained via the vector

cross.product relationship:

= s, (I0)

as described in [I], knowledge of a and n alone will uniquely specify orientation of the end effector.

We next note that if

o_= (11)

represents the angular velocity of the tool frame, then it is not difficult to show, in light of Figure 3, that o_can be
represented by the sum of its "translational component" relative to the motion of a, namely the cross product ax'_, where

da
= "_t' and its "rotational component ') relative, to the motion of a, namely the sc_ar veltx'ity dot product h.s muhildied

by a; i.e.

CO= ax_ + (_.s)a. (12)

Furthermore, it now follows by expanding (12) in light of (9) that _ is also given by the following matrix-vector product:

ny [

Lsxaz sya: sza_-ay ax ay[

The results which now follow build on the material presented in Section 4.3 of [11 which pertains to so-called

spherical wrist numipulators. In such cases, (4.3.2) of [1] establishes the fact that

b_, 021

= O_x = xi l_ 0_1'

co_ 051

.tOz 061

or that the (6:<6) Jacobian matrix associated with spherical wrist manipulators can be "triangulafzcd", with Jj, a (3×3)
"positional" Jacobian associated with the velocity of the wrist origin relative to motion of the first three links, and JR zl

(3x3) "orientation" Jacobian associated with the angular velocity of the end effector frame relative to the motion of the
final three links.
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If we now "invert" (14), it follows that

6 = r t = [_j_tj#_t Kt ,
(15)

or, in light of (13), that

A= Jt (16)
j_t 0

6 = [_jitj#_t jit F(0)

with the (6x9) ;'inverse" Jacobian, Jr, given by the product of the (6>:6) triangular inverse Jacobian defined by (15) and
the (6x9) "block diagonal" matrix consisting of an upper left (3×3) identity matrix Iz, and a lower right (3×6)F(0),

defined via (13).

We next note that the 9-vector "configuration"

x _ = _(o) 07)

for a known (30, with corresponding

"_x= . (is)

As defined, X completely specifies both the (wrist origin) posRion t and the (end effector) orientation of any given mani-

pulator.

Now consider the dynamical system depicted in Figure 4, which we claim "solves" the inverse kinematic problem
associated with the complete configuration of six link, spherical wrist manipulators. In particular, the dynamical equa-

tions associated with Figure 4 are

O, = Jt(Os)K[Xd - _XXs], (19)

with K a diagonal (919) gain matrix, and

= (3(od. (2o)

Since 0, is also equal to Jt(0s))C_.s, in light of (16) and (18), with X_sarbitrary, (19) implies that

or that the 9-vector _ is analogous to the 3-vector Xs of (7). This in turn implies that X__will track the desired Carte-

sian configuration Xd with an (arbitrarily fast) exponentially decaying error! As we noted earlier, it therefore follows that

0tit) can be made to al_proach the desired 0d which corresponds to _Xd = G(0o) arbitrarily fast as well. In other words,
the Figure 4 d)'nandcal system solves for the first time the complete i:zverse kinematic problem for vim,tally any six iitd_,

spherical wrist manipulator.

Figures 5 and 6 depict actual simulated runs of the Figure 4 system for the PUMA 560 iqdustrial manipulator, as

mathematically described in [1], when the (end effector) position vector (p.py, p,) goes from (3.5, 2.5, 2.9) at to :: 0 to

(1.5, 2.0, 4.4) at tf = 5 along a LSPB (Linear Segment with Parabolic Blend) trajectory _ while the orientation of the end

cffector frame undergees a simultaneous smooth transition for (n.ny, nz, a.ay, a,.) from (0, O, -I, O, 1, O) to (-1, 0, O, O, O,

-I) o;,'er the same 5 second time interval. Only four of the nine elements of X are explicitly depicted, and in botla cases,

(_)'l'he remitlinkspace rather than joint space will be used here for reasons which aredelineated,in Section 1.4 of IlL

t Of course, for spherical wrist manipulators, knowledge of the wrist origin position and a, the approach vector, directly implies knowledge of the
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the initial conditions on 0s were appropriately se_. tv insure that __s (0) = _Xa(0). It might be noted that in the F;gure 5

tun_ all nine of the nonzero, diagonal elements of K were set equal to 10, while these same nine elements were increased
to 100 for the Figure 6 runs. The reader will note that a rather small error exists between the desired and simulated

dynamical system configuration parameters depicted in the K=I0 case. Moreover, this small error is essentially elim-
inated by increasing the (elements of the) diagonal gain matrix K to 100, as depicted in Figure 6; i.e. the desired and

simulated configuration parameters are so close that they are virtually undistinguishable in this latter case! This, in turn,

implies corresponding dynamical system link output displacement values which _L'ivery close" to those which would

mathematicaUy solve the inverse kinematic question for the given, desired Xa = [_ ], especially in the K= 100 case. In

summary, therefore, Figures 5 and 6 clearly illustrate the employment of the Figure 4 dynamical system as a viable
alternative technique for solving the inverse kinematic question for a large class of multi-link numipulators.

A number of observations are now in order relative to this dynamical system inverse kinematic solution. First of

all, we note that 0s is also obtained as an output of our dynamical system solution without explicit knowledge or ttse of X

•' This could prove most useful in the implementation of a variety of control schemes which require desired link veloci-
ties as well as positions; e.g. in relatively simple PID controllers, where D denotes the (time)derivative of the linkl'_'_-

tional drive signal.

We next note that because of the spherical wrist assumption, we actually can determine an analytical expressinn for

the (6×9) "inverse" Jacobin, Jr(0), as defined by equation (16). For example, such an analytical expression is essen-

tially given in Example 4.3.23 of [1] for the PUMA 560 industrial manipulator. Certain earlier relxltts and texts have

implied that analytical expressions for j-t in the six link case are virtually impossible to obtain. In Ill we show that this

is not necessarily the case for spherical wrist manipulators, and here we exploit this observation to extend a three-

dimensional inverse kinematic positional result to the more general and important, six-dimensional conliguration case.

We further note that the particular inverse kinematic (position and velocity) solutions we obtain via the dynamical

system of Figure 4 will be unique, and will depend on the initial conditions associated with the system. Different initial
conditions can be used to produce all of the solution sets associated with a given manipulator, if desired, or only the par-

t;cular one "best suited" to a specific task, such as (say) an arm right, elbow above trajectory for the PUMA 560 (see

Figure 3.4.56 of [I]).

We finally observe, again in light of Figures 5 and 6, that there is no need to sequentially solve a set of rather

complex and time-cnnsuming Atan2 functions associated with a given robot to obtain the inverse kinematic link displace-
ments associated with a desired Cartesian configuration. Al'hough the computational savings associated witt, the direct

employment of the Figure 4 dynamical system, rather than the explicit solution of a sequential set of Atau2 functions,

l,as yet to be completely determined, there is reason to believe that such savings c,'m be rather significant•

3. Practical Consequences to be Investigated

There ,are numerous practical consequences assoc'.'ated with the new computational inverse kinematic procedure

which has just been outlined, and the primary purpose +:f this section will be to delineate some of them. To begin, we

might again note the obvious, namely that the procedure can be directly utilized to produce desired link positional and

velocity drive _ignals to the link motors which then might be controlled by any "standard prtx:edure", such as a unity

fuedba_'k PID compensator, without the explicit evaluation of any analytical Atan2 functions. Of course, in such cases

and in the others which we will outline in this section, it is important to realize that a flexible control computer must be

employed in order to physically realize (say) the Figure 4 feedback system. In light of this obselvati0n, it is of interest

to note that a truly significant amount of robotics development effort within LEMS at Brown University _wer the past

year has focused on the development of one such flexible control computer for rotx)tic applications, n:tmcly SIERA (Sys-

te.m for Implementing and Evaluating Robotic Algorithms).

SIERA is a unique multiprocessor system composed of two subsystems--a tightly-coupled real-time serw_ system

and a loosely coupled multiprocessor network (the "Armstrong system"), as depicted in Figure 7. A shared memory

end cffector position as well. as is shown in [I].
++Bo421references Ill and [61describe such LSPB trajectories.
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interface allows communication between these two subsystems. The architecture is flexible enough to accommodate a

variety of robots and sensors, since all robot dependent hardware is restricted to the robot interface board. Thus, we
have been able to control the Unimation Puma 560 and the IBM 7565 robots that are currently in our laboratory. A

detailed description of the S1ERA hardware can be found in [4].

The SIERA operating system provides a flexible development system for research in robotic algorithms, without

making the system too complex to be used for instructional purposes. This is accomplished by defining three different

programming levels: i) the user level, which is analogous to a commercial system such as Unimation's VAL robot com-
mand language, ii) the researcher level, which fulflls the main objective of SIERA by 'allowing any type of robotic algo-
rithm to be added to the system, and iii) the; expert level, which is used to add a new robot or to enhance the operatiug

system. It should be noted that the operating system is also generally applicable since all (low-level) robot tasks are han-
dled by interface routines written by an expert level programmer. Ft,;ther details of the operating system and the pro-

granaming levels can be found in [5].

Another potential use for our inverse kinematic procedure which has yet to be fully exploited is in the auto,,u, ic

avoidance of tP_,enerate configurations, such as those associated with Jacobian singularities. To be more specific, it is

well known t_.,_: certain desired Carte_.an trajectories may imply corresponding link trajectories for which IJ(0)l, the

determinant of the Jacobian, approaches zero. In such cases, excessive link velocities are required to produce seemingb"

well-behaved Cartesian motion. We feel that one way of automatically avoiding such degenerate conligurations could he

to physically restrict the magnitude that IJ(0,)l can decrez.se to in either the Figure 1 or One }.igure 4 system. Although
such a procedure will not yield the desired Cartesian trajectories, hopefully it will yield "'acceptable" C:utesian trajec-

tories xshich are "close to" the specified ones. Some preliminary computer simulations bounding IJ(0_)l have produced

r:tthcr encouraging results, and one of the primary objectives of our continuing research will be to thoJoughly investigate

this :tnd other :mtomatic degenerate coniiguration avoidance techniques.

Another potential use of our inverse kinematic procedure is that associated with redundant manipulators; i.e. mani-

pulators which have more degrees of freedom than are necessary to achieve (say) desired end effector orientations. To
be more Sl_zcific, it is well known that the inverse kinematic problem associated with redundant manipulators can have

an inlinite number of solutions, and the problem then becomes one of appropriately selecting the "best" solution from

:his infinite set. It might be noted that one way of obtaining a variety of different link solutions, (say) in light of Figure

1, is to employ "different right inverse" Jacobians instead of the square J-t(0 s) depicted. Our investigations are continu-

it_g to determine how a "best right inverse" Jacobian might be selected and utilized in our computational inverse
kinematic procedure in order to automatically yield a correspondingly "best" inverse kinematic solution for redundaet

:lla n i p U [ ;Itt)rs.

Another potentially import:mr .'lpplication of our computational inverse kinematic procedure concerns its employ-

mere in m,,re ._opItisticated control strategies where knowledge of 0s(t), ,as well as 0s(t) and 0_(t), would be used. One

such example is that associated with the inverse dynamic, feedforward compensation procedure otstlined in Section 8.5 of

II ]. \ve have already conducted some preliminary simulations of an"extcnded" version of the l:igure I and Figure -1

dvn:lmic:d .systems ("extended" by the addition of another parallel bank of integrators as well as :q_propfiate feedback

_ain matrices) in order to produce 0 s as well as 0_ and 0s. One such "extended" system is depicted in Figure _ in its

,iml,!..'_t Ipositional_ form. The mathematical equations associated with such a dynamical system can directly be sho_vn

to im[qv an ,mal¢_g¢_us linear, time-invariant, second order differential equation relation:;hip between input X_(t) and out

t_ut N.(t) , _latucly

x+(t)+ A,X+(t)+ KXs(t) = Xa(t), (22_

which czm then be used to establish convergence relations between 0+(t) and its derivatives and the desired 0,t(t) :rod its

dcrivmives. Results in this area are still under development. In particular, we are currently working on :t more complete

n_athcmatic:dly undcrst:mding of the r'igure 8 system, including the implications regardillg the t),(t), 0_(t_, and O,(t) thus

_buizlcd. _hen compared to the desired values of 0a(t) and its deriwltives in both the simple (positional) case depicted

and the full six degree of freedom contiguration case. Here again, our initial simulatio_s h:tve hecn czlcouragiug ,rod _e

.ire ;tcli_ely cominuing these investigations.
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4. Summary

We have now outlined a new computational procedure for solving the inverse kinematic question for a large class
of multi-link manipulators. Furthermore, we have mathematically established the "equivalence" between this computa-
tional procedure and the behavior of relatively simple first and second order, linear, time-invariant dynamical systems.
We have indicated a number of potential practical consequences associated with the employme.t of this technique in

robotic applications, namely:
(i) its use in directly obtaining unique values for the inverse kinematic positions, velocities, and accelerations,
(ii) its potential for automatically avoiding degenerate configurations,
(iii) its ability to produce the "best" inverse kinematic solutions for redundant manipulators, and
(iv) its employment in more sophisticated motion control strategies,

We have expended a considerable amount of time and effort within LEMS in constructing a general purpose, flexi-
ble robot control system (SIERA) which can be used to thoroughly implement, test, and evaluate all aspects of our robot-
ics research program, and we have two industrial manipulators (a PUMA 560 anthropomorphic robot and an IBM RS/I
Cartesian robot) to employ in our studies. Our investigations are well underway, and we are very optimistic that
significant new techniques for robot control and manipulation will result as a consequence of these investigations.
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Figure 1

A Positional Inverse Kinematic Solution

171



Pigure 2

A Dynamical System Representation for X s
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Figure 3

Rotation of the Tool Frame Relative to the Base Frame
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Figure 4

A Configuration Inverse Kinematic Solution
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